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Abstract

We consider the problem of providing outlier robust inference in a general class of
instrumental variable models that includes the linear instrumental variable model and
the endogenous probit model. It is well known that classical instrumental variable re-
gression tools can be unreliable in this context due to outliers. Therefore, we propose a
framework to construct weak instrument robust testing procedures that are also robust
to outliers. The framework is constructed upon M-estimators and we show that classical
weak instrument robust tests, such as the Anderson-Rubin test and the conditional like-
lihood ratio test can be obtained as special cases. As it turns out that the classical tests
are not robust to outliers, we show how to construct robust alternatives. We investigate
the robustness properties of the robust test statistics and show that their asymptotic
distributions are the same as the classical test statistics. The theoretical results are cor-
roborated by a simulation study. Finally, we revisit three empirical studies affected by
outliers and apply the robust tests to re-evaluate their results.
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1 Introduction

The instrumental variable (IV) model is recognized as an important tool that can be used

to draw causal inferences in non-experimental data (Angrist et al., 1996). Its applicability

spans over different fields, for example, to study the effect of chemotherapy for advanced lung

cancer in the elderly (Earle et al., 2001), the effect of education on labor market earnings

(Angrist and Krueger, 1991) or the effect of foreign media on authoritarian regimes (Kern

and Hainmueller, 2009). In each of these examples, an endogeneity problem occurs where

the explanatory variable is correlated with the error term, causing the Least Squares (LS)

estimator to be biased. The researchers then introduce instrumental variables to resolve this

problem. The instrumental variables should be correlated with the (endogenous) explanatory

variable and uncorrelated with the error term. When instrumental variables are available, then

reliable estimation (and inference) is possible using IV estimators, such as the Two-Stage Least

Squares (2SLS) estimator.

In practice, it is difficult to find instruments that satisfy both conditions. In particular,

the instruments that researchers propose are oftentimes only weakly correlated with the en-

dogenous explanatory variable (Andrews et al., 2019). When the instruments are weak, then

classical IV estimators, such as the 2SLS estimator, are biased and t-tests based on IV esti-

mators can fail to control the size of the tests and their associated confidence intervals are

incorrect (Nelson and Startz, 1990; Bound et al., 1995). Since IV estimators are biased when

the instruments are weak, it is common to draw inference in the IV model using a two-step

procedure. In the first step, the strength of the instruments is tested by means of an F -test.

When the first-stage F statistic is above a certain threshold (motivated by Staiger and Stock

1997 a cutoff value of 10 is common), the instruments are considered to be strong. When the

instruments are strong, then in the linear IV model estimation is done with a 2SLS estimator

and inference with a t-test. When the instruments are weak, then weak instrument robust

tests are used (Anderson and Rubin, 1949; Kleibergen, 2002; Moreira, 2003).
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It is well known from the methodological literature that the two-step procedure described

above is sub-optimal and it is typically advised to directly rely on weak instrument robust

tests, or, use larger cutoff values for the first-stage F (Andrews et al., 2019; Lee et al., 2022;

Keane and Neal, 2023). In particular, in the just-identified linear model, i.e., with one endoge-

nous variable and one instrumental variable, Moreira (2009) shows that the Anderson-Rubin

(AR) test (Anderson and Rubin, 1949) is the uniformly most powerful among the class of

unbiased tests. When there is one endogenous variable and multiple instrumental variables,

then Andrews et al. (2006) show that the conditional likelihood ratio (CLR) test introduced

by Moreira (2003) enjoys good power properties in the (homoskedastic) linear IV model.

Although, weak instrument robust testing procedures, such as the CLR test, are widely

used, their (outlier) robustness properties have not been studied1. Recently, Young (2022)

pointed out that many empirical IV studies are affected by a few outliers or by small clusters

of deviating observations. In the two-step procedure, the first-stage F -statistic is not robust

against outliers (Ronchetti, 1982). Hence, even one outlier is enough to inflate the first-stage

F statistic so that the researcher is under the impression that the instrument is strong, while

it is weak (see Klooster and Zhelonkin 2023 for an example). Therefore the incorrect inference

procedure is used in the second stage. It is well known that the classical IV estimators, such

as the 2SLS and Limited Information Maximum Likelihood (LIML) estimators, are not robust

to outliers (Zhelonkin et al., 2012; Freue et al., 2013; Sølvsten, 2020; Jiao, 2022) and robust

estimators were proposed. However, the problem of (outlier) robust inference, in particular in

combination with weak instruments, has not been fully addressed yet.

Therefore, in this article, we propose a framework that allows researchers to construct

(outlier) robust versions of the AR, K (Kleibergen, 2002) and CLR tests. The tests allow

outlier and weak identification robust inference in a large class of models including the linear

instrumental variable model, endogenous probit model and the endogenous Tobit model. We

1A notable exception is the article by Klooster and Zhelonkin (2023) who study the robustness properties
of the Anderson-Rubin test in the linear instrumental variable model.

3



characterize the robustness properties of the tests by using the influence function approach

(Hampel, 1974). We formally show that the robustness properties of the tests fully depend on

the robustness properties of the estimators they are constructed upon. The robust tests are

constructed using a minimum distance approach that only requires estimation of the reduced

form parameters for the construction of the tests (Magnusson, 2010). The reduced form model

does not contain endogenous regressors and therefore conventional robust regression estimators

can be used for the estimation. This allows us to directly use the large literature on robust

statistics (Hampel et al., 1986; Huber and Ronchetti, 2009) and software implementations

thereof for the construction of the tests making them easy to implement in practice.

Conceptually, we formalize the outlier contamination using the Huber (1964) gross-error

model Ft = (1 − t)F + tG, where t is a (typically small) contamination proportion. We are

interested in drawing inference for the central distribution F , but we assume that it only

holds approximately and the data that we observe comes from Ft. The distribution G is

assumed to be completely unknown and it is the source of the contamination. This approach

is closely related to the literature on local misspecification (Kitamura et al., 2013; Andrews

et al., 2017, 2020; Bonhomme and Weidner, 2022; Ichimura and Newey, 2022). In our case, the

outliers can be viewed as a specific type of local contamination and more general conclusions

could be made. However, in this work, we focus on contamination by outliers. The goal is

to draw inference that is valid at the central model F , but also remains stable and reliable

when the data is generated according to Ft. The classical tests are valid when all the data

is generated according to F , but, as we show both theoretically and by simulation, when the

data is generated according to Ft, then the they can easily be distorted. Our approach benefits

from the parametric structure, e.g., computational simplicity and interpretability, while being

resistant to small but harmful deviations from the assumed model F .

When the model F does not hold even approximately, then the use of non-parametric

weak instrument robust inference (Andrews and Soares, 2007; Andrews and Marmer, 2008) is
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advised. Note, however, that non-parametric procedures are typically not designed to be robust

to outliers. For example, the sample mean is a non-parametric estimator of the expectation,

but it is not robust as one outlier can make it arbitrarily biased (see Huber and Ronchetti 2009,

p. 6 for further discussion). Similarly, weak instrument robust quantile methods introduced by

Chernozhukov and Hansen (2008) and Jun (2008) are also not designed to be robust against

outliers.

The setup of the article is as follows. In Section 2, we introduce the model and the notation.

In Section 3, we revisit the minimum distance approach to construct weak instrument robust

tests (Magnusson, 2010). In Section 4, we study the robustness properties of the minimum

distance robust tests. As it turns out that the classical minimum distance robust tests are

not robust to outliers, we show how to construct robust alternatives in Section 5. Then, in

Section 6, we use a simulation study to study the small sample properties of the robust tests

and compare their performance to their classical counterparts. In Section 7, we revisit three

empirical studies and show how the robust tests can be used in practice. Finally, in Section 8,

we conclude.

2 Instrumental Variables Models

We assume that the data is generated according to a limited dependent instrumental variable

regression model. The model consists of a structural equation (1) and a first-stage equation

(2):

y∗ = βx∗ + w⊤γ1 + u, (1)

x∗ = w⊤γ2 + z⊤π + v, (2)

where y∗ and x∗ are latent endogenous variables, z is a k × 1 random vector of instrumental

variables and w is a p× 1 random vector of control variables. We assume that γ1, γ2 ∈ Rp are

parameter vectors that both, when necessary, include an intercept. We assume π ∈ Rk and

β ∈ R. We assume that the errors (u, v) have mean zero, and we assume that the errors are
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uncorrelated with the instruments z and control variables w.

We are interested in testing the hypothesis

H0 : β = β0 against H1 : β ̸= β0 (3)

in the model (1) - (2). We do this without imposing further assumptions about the identifica-

tion strength, i.e., the magnitude of the correlation between the instrument z and the endoge-

nous regressor x∗. In practice, when this correlation is sufficiently small, then conventional

approximations to the distribution of instrumental variable estimators, like the two-stage least

squares estimator, are unreliable (Bound et al., 1995; Andrews et al., 2019). Consequently, this

issue of weak identification can cause the estimators to be badly biased and make corresponding

inferential procedures unreliable. For this reason, we construct a general class of outlier and

weak identification robust tests based on a minimum distance approach (Magnusson, 2010).

These tests are constructed upon estimators in the reduced form model. The reduced form

model can be obtained by substituting (2) into (1). We obtain

y∗ = z⊤δ + w⊤γ + ϵ.

with δ = πβ, γ = γ1 + γ2β and ϵ = vβ + u. To further simplify the notation, we assume that

γ1 = γ2 = 0 so that the control variables can be dropped from the model. Hence, we obtain

the following reduced form equations

y∗ = z⊤δ + ϵ, (4)

x∗ = z⊤π + v. (5)

Define θ = (δ⊤, π⊤)⊤, then we assume that the model (4) - (5) is governed by Fθ. In

practice, we assume we observe i.i.d. data di = (f(y∗i ), h(x
∗
i ), z

⊤
i )

⊤, which are random samples

from d = (f(y∗), h(x∗), z⊤)⊤. We further define yi = f(y∗i ) and xi = h(x∗i ). The functions f

and h are assumed to be known and allow us to model a general class of models. For example,

when f and h are identity functions, then it is the linear instrumental variable model. When
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f(a) = 1({a > 0}), where 1(·) denotes the indicator function, and h is the identity function

then we obtain the endogenous probit model as shown in Example 1. When f(a) = max(a, 0)

and h is the identity function, then we obtain the endogenous tobit model as shown in Example

2. We define Y,X ∈ Rn, which are vectors with entries yi and xi respectively, and Z ∈ Rn×k,

the matrix with rows z⊤i .

Example 1 (endogenous probit model). When we assume that f(a) = 1({a > 0}) and h(a) = a,

then we observe di = (yi, xi, z
⊤
i )

⊤ according to an endogenous probit model:

yi = 1(z⊤i δ + ϵi > 0),

xi = z⊤i π + vi,

where the error terms are realizations from a bivariate normal distribution, with variances

σ2
v , σ

2
ϵ = 1 and correlation ρ.

Example 2 (endogenous tobit model). When we assume that f(a) = max(a, 0) and h(a) = a,

then we observe di = (yi, xi, z
⊤
i )

⊤ according to an endogenous tobit model:

yi = max(z⊤i δ + ϵi, 0),

xi = z⊤i π + vi,

where the error terms are realizations from a bivariate normal distribution, with variances

σ2
v , σ

2
ϵ and correlation ρ.

3 Minimum Distance Approach

We construct outlier robust tests by using a minimum distance approach (Magnusson, 2010).

The intuition behind this approach is that the structural parameter of interest β can be linked

to the reduced form parameter θ via a distance function r(θ, β). Under the null hypothesis

H0 : β = β0, we can use the reduced form equations (4) - (5) to show that

y∗ − x∗β0 = z⊤(δ − πβ0) + ϵ− β0v = u,
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as δ − πβ0 = 0 and ϵ = vβ0 + u under the null. Therefore, if we define r(θ, β0) = δ − πβ0,

then we can test whether the null hypothesis is true by checking whether r(θ, β0) = 0, which

only requires estimation of the parameter θ. Thus, under Assumption 1, a test statistic can

be constructed that tests whether H0 : β = β0 by checking if r(θ̂, β0) = 0.

Assumption 1. We assume θ̂
p→ θ and

√
n(θ̂ − θ)

d→ N (0,Ω), with Ω =

(
Ωδδ Ωδπ

Ωπδ Ωππ

)
, a

symmetric, positive definite covariance matrix.

Proposition 1. Given a hypothesized value β0, we define

S(θ̂, β0) = nr(θ̂, β0)
⊤Ω(β0)

−1r(θ̂, β0), (6)

with Ω(β0) = Ωδδ − β0(Ωδπ + Ωπδ) + β2
0Ωππ. Then, under the null hypothesis H0 : β = β0 and

Assumption 1, it holds that S(β0)
d→ χ2(k).

The limiting distribution of the statistic (6) does not depend on the nuisance parameter π

and therefore it remains reliable irrespective of the strength of the identification. However, the

test ϕS(β0) = 1{S(β0) > χ2
1−α(k)} loses power when the number of instrumental variables k

grows. This happens, because the degrees of freedom of the test increase, while the dimension

of the parameter of interest β remains only one dimensional. A solution to this problem is to

incorporate more information from π̂ as it can show which deviations of r(θ̂, β0) from zero are

actually informative. Unfortunately, this would cause the asymptotic distribution of the test

to depend on the parameter π, which could lead to weak identification problems.

To circumvent this problem, Kleibergen (2002) and Moreira (2003) introduced tests that

remain powerful when there more instrumental variables. The tests are constructed upon an

alternative estimator of π defined as

D(θ̂, β0) = π̂ − (Ωπδ − β0Ωππ)Ω(β0)
−1r(θ̂, β0).

Lemma 1. Under the null hypothesis and Assumptions 1, it holds that

√
n

{
r(θ̂, β0)

D(θ̂, β0)

}
d→ N

[(
0
π

)
,

{
Ω(β0) 0
0 Λ(β0)

}]
, (7)

8



with Λ(β0) = Ωππ − (Ωπδ − β0Ωππ)Ω(β0)
−1(Ωδπ − β0Ωππ).

Thus, as r(θ̂, β0) and D(θ̂, β0) are uncorrelated and normally distributed, they are asymptot-

ically independent. Moreover, the nuisance parameter π only enters the limiting distribution

via D(θ̂, β0). The conditional limiting distribution of r(θ̂, β0) given D(θ̂, β0) does not depend

on π and is therefore not affected by the identification strength. This way, (conditional) test

statistics can be constructed that incorporate information about π̂ so that the test can remain

powerful even when the number of instruments increase without being affected by potential

identification failures. This brings us to the minimum distance versions of the K statistic

(Kleibergen, 2002) and conditional likelihood ratio statistic (Moreira, 2003) defined as follows

K(θ̂, β0) = nr(θ̂, β0)
⊤D(θ̂, β0)

{
D(θ̂, β0)

⊤Ω(β0)D(θ̂, β0)
}−1

D(θ̂, β0)
⊤r(θ̂, β0), (8)

W (θ̂, β0) = nD(θ̂, β0)
⊤Λ(β0)

−1D(θ̂, β0),

CLR(θ̂, β0) =
1

2

[
S(β0)−W (β0) +

√
{S(β0)−W (β0)}2 + 4W (β0)K(β0)

]
. (9)

Proposition 2. Under the null hypothesis H0 : β = β0 and Assumption 1 it holds that K(θ̂, β0)
d→

χ2(1). Under the null hypothesis H̃0 : π = 0 and β = β0 and Assumption 1, it holds that

W (θ̂, β0)
d→ χ2(k). Under the null hypothesis H0 : β = β0 and Assumption 1, then conditional

on D(θ̂, β0) = D and with W = D⊤Λ(β0)
−1D, it holds that

CLR(θ̂, β0)
d→ 1

2

[
χ2(k − 1) + χ2(1)−W +

√
{χ2(k − 1) + χ2(1) +W}2 − 4Wχ2(k − 1)

]
,

(10)

where χ2(k − 1) and χ2(1) are independent chi-squared distributed random variables.

Proposition 2 allows us to define the following tests

ϕK(β0) = 1{K(θ̂, β0) > χ2
1−α(1)},

ϕW (β0) = 1{W (θ̂, β0) > χ2
1−α(k)},

ϕCLR(β0) = 1
[
CLR(θ̂, β0) > c1−α{D(θ̂, β0)}

]
,
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where c1−α{D(θ̂, β0)} denotes the conditional 1 − α quantile of the (conditional) asymptotic

distribution given in (10). The critical values and confidence sets of the CLR test can easily

be computed using simulation and test inversion (Moreira, 2003; Andrews et al., 2019). That

is, we find all the values of β0 for which the data does not reject the null hypothesis. The

confidence set is then {β0 | β0 ∈ R and ϕCLR(β0) = 0}.

In Example 3, we illustrate that if we use the LS estimator for θ̂, then S(θ̂, β0) is the

Anderson-Rubin test statistic (Anderson and Rubin, 1949), K(θ̂, β0) is theK statistic (Kleiber-

gen, 2002), and CLR(θ̂, β0) is the conditional likelihood ratio test statistic (Moreira, 2003).

Magnusson (2010) introduced extensions of these test statistics in limited dependent vari-

able models (4) - (5). In such models, θ is estimated using an estimator tailored to the specific

limited dependent variable model under consideration. For instance, in the case of the endoge-

nous Tobit model (see Example 2), Magnusson (2010) uses the symmetrically censored least

squares estimator (Powell, 1986) to estimate δ and the LS estimator for π.

To evaluate the robustness of these minimum distance test statistics, we restrict our focus

to the class of minimum distance test statistics (6), (8) and (9) where θ is estimated with

an M-estimator (Huber, 1964). This class encompasses numerous minimum distance tests,

such as the classical Anderson-Rubin, K and CLR tests based on the LS estimator, but also

many of the tests described in Magnusson (2010). In the following section, we provide a brief

introduction to M-estimators.

Example 3. When we estimate θ with the LS estimator, and we use

Ω̂ = (Z⊤Z)−1

(
σ̂2
ϵ σ̂ϵ,v

σ̂v,ϵ σ̂2
v

)
,

where σ̂2
ϵ , σ̂ϵ,v and σ̂2

v denote consistent estimates of σ2
ϵ , σϵ,v and σ2

v. Then we obtain

r(θ̂, β0) = (Z⊤Z)−1Z⊤(Y − β0X),

D(θ̂, β0) = (Z⊤Z)−1Z⊤
{
X − σ̂u,v

σ̂2
u

(Y −Xβ0)

}
,
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where σ̂u and σ̂u,v denote consistent estimates of σu and σu,v. Plugging these into the statistics

and yields the classical AR, K and Wald statistics:

S(θ̂, β0) =
(Y − β0X)⊤Z(Z⊤Z)−1Z⊤(Y − β0X)

σ̂2
u

,

K(θ̂, β0) =
1

σ̂2
u

(Y −Xβ0)
⊤PZD(θ̂,β0)

(Y −Xβ0),

W (θ̂, β0) =

{
X − σ̂u,v

σ̂2
u

(Y −Xβ0)

}⊤{(
σ̂2
v −

σ̂u,v
σ̂2
u

)
Z⊤Z

}−1

×{
X − σ̂u,v

σ̂2
u

(Y −Xβ0)

}
,

with PZD(θ̂,β0)
= ZD(θ̂, β0)

{
D̂(θ̂, β0)

⊤Z⊤ZD(θ̂, β0)
}−1

D(θ̂, β0)
⊤Z⊤. Plugging these statistics

into (9) yields the CLR statistic introduced by Moreira (2003).

3.1 M-estimators

We construct minimum distance robust test statistics (6), (8) and (9) based on an M-estimator

θ̂ =
(
δ̂⊤ π̂⊤

)⊤
that solves

1

n

n∑
i=1

Ψ(di, θ̂) = 0. (11)

As we showed in Example 3, in case of the classical CLR statistic introduced by Moreira (2003),

it is constructed upon LS estimators, which can be obtained by using the score function

Ψ(di, θ̂) =

{
(yi − z⊤i δ̂)zi
(xi − z⊤i π̂)zi

}
. (12)

Under general regularity conditions (A.1) − (A.8) stated in Assumption 2, M-estimators are

consistent at the model and asymptotically normally distributed (Clarke, 1983, 1986). Note,

when Assumption 2 holds and we construct a minimum distance robust test on an M-estimator

θ̂, then the results presented in Proposition 1 and 2 also hold.

Assumption 2 (Adapted from Heritier and Ronchetti (1994)). Let F be any arbitrary distribu-

tion on R2k and define

KF (θ) =

∫
Ψ(d, θ)dF.
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(A.1): KF (θ) exists at least on a (nondegenerate) open set O.

(A.2): There exists θ∗ ∈ O satisfying KF (θ
∗) = 0.

(A.3):
∫
Ψ(d, θ)dFθ = 0 (Fisher consistency).

(A.4): Ψ(d, θ) is a 2k× 1 vector function that is continuous and bounded on D×Θ, where

Θ is some nondegenerate compact interval containing θ∗.

(A.5): Ψ(d, θ) is locally Lipschitz in θ about θ∗, i.e., there exists a constant α such that

||Ψ(d, θ)−Ψ(d, θ∗)|| ≤ α||θ − θ∗)||

uniformly in d ∈ D and for all θ in a neighbourhood of θ∗.

(A.6): The generalized Jacobian ∂KF (θ) is of maximal rank at θ = θ∗.

(A.7): Given ∆ > 0, there exists ϵ > 0 such that for all distributions in a ϵ neighborhood of

F , supθ∈Θ ||KG(θ)−KF (θ)|| > δ and ∂KG(θ) ⊂ ∂KF (θ)+∆B, uniformly in θ ∈ Θ,

where B is the unit ball of 2k × 2k matrices.

(A.8): KF (θ) has at least a continuous derivative (∂/∂θ)KF (θ) at θ = θ∗.

More details on the Assumptions (A.1)− (A.8) can be found in Heritier and Ronchetti (1994)

and Clarke (1983, 1986). Here we briefly mention some important properties of the assumptions

that are also explained by Heritier and Ronchetti (1994). The first two assumptions (A.1) −

(A.2) establish the existence of the functional θ∗ = T (F ) that defines an M-estimator through

T (Fn), where Fn denotes the empirical distribution function. Assumption (A.3) makes sure the

estimator is Fisher consistent. Fisher Consistency is a standard assumption in the robustness

literature (Hampel et al., 1986). Assumptions (A.4)− (A.8) make sure the estimator is Fréchet

differentiable. When an estimator is Fréchet differentiable, then it has an influence function

and the estimator is asymptotically normal. More details on the influence function and its

significance are given in the next section.
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4 Robustness properties

In this section, we study the robustness properties of test statistics (6), (8) and (9) when

they are constructed upon an M-estimator θ̂ that solves (11). We investigate the robustness

properties of the test statistics using the influence function approach (Hampel, 1974). For this

reason, in Section 4.1, we first go over the definition of the influence function and explain its

significance.

4.1 Influence function

To study the robustness properties of an estimator, we analyze its influence function (Hampel,

1974). Let T denote a Fisher consistent statistical functional, then the influence function is

defined as

IF(d;T, F ) = lim
t↓0

T {(1− t)F + t∆d} − T (F )

t
, (13)

where ∆d is a point mass at d. The influence function describes the effect of an infinitesimal

contamination at the point d on the functional, standardized by the mass of the contamination

(Hampel et al., 1986). Therefore, when the influence function is unbounded, then we say that

the functional is not (locally) robust. When a statistical functional T (F ) is sufficiently regular,

then we can write out a von Mises (1947) expansion and obtain

T (G) = T (F ) +

∫
IF(d;T, F )d(G− F ) + o(||G− F ||∞), (14)

where || · ||∞ denotes the supremum norm. If we now consider the family of distributions

Ft = (1 − t)F + tG with t ≥ 0 close to zero, then we see that the influence function can be

used to linearize the bias of the functional T (F ) as we obtain the approximation

sup
G

||T (Ft)− T (F )|| ≈ t sup
d

|| IF(d;T, F )||. (15)

Hence, when the influence function of a statistical functional T is not bounded, then the

maximum bias in a neighborhood of F can be infinite, even when the contamination proportion
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t is small. Therefore, for a statistical functional to be (locally) robust, a bounded influence

function is required.

Note, the influence function of an estimator is closely connected to its asymptotic variance

(Hampel, 1974). When the functional T is sufficiently regular, then plugging in the empirical

distribution function Fn in (14) and multiplying by
√
n gives

√
n{T (Fn)− T (F )} =

1√
n

n∑
i=1

IF(di;T, F ) + o(
√
n||Fn − F ||∞).

Therefore, as n→ ∞, we have

√
n{T (Fn)− T (F )} d→ N{0,

∫
IF(d;T, F ) IF(d;T, F )⊤dF}.

4.2 Influence function of an M-estimator

We can write the estimator θ̂ in functional form as follows. Let F be an arbitrary distribution

function on R2k. Define θ(F ) the solution to∫
Ψ{d, θ(F )}dF = 0.

Then we define θ̂ = θ(Fn), where Fn denotes the empirical distribution function, which leads

to (11). Using the functional form, we can derive the influence function as follows. Let

Ft = (1− t)Fθ + t∆d, then we have∫
Ψ{d, θ(Ft)}dFt = 0 =⇒ t

∫
Ψ{d, θ(Ft)}d(∆d − Fθ) +

∫
Ψ{d, θ(Ft)}dFθ.

Taking a derivative with respect to t, and letting t = 0, we obtain

IF(d, θ(·), Fθ) =

{
−
∫
(∂/∂θ)Ψ(d, θ)dFθ

}−1

Ψ(d, θ). (16)

From (16) it becomes clear that the influence function of the M-estimator θ̂ is proportional to

the general score function Ψ, the influence function of the M-estimator θ̂ is only bounded when

the score function Ψ is bounded. In particular, as we show in Example 4, when we estimate θ

with a LS estimator, then the influence function is not bounded.
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Example 4. The influence function of the LS estimator is

IF (di, θLS(·), Fθ) =

{∫ (
zz⊤ 0
0 zz⊤

)
dFθ

}−1{
(yi − z⊤i δ)zi
(xi − z⊤i π)zi

}
∝

{
(yi − z⊤i δ)zi
(xi − z⊤i π)zi

}
,

which is unbounded in yi, xi and zi. Therefore, an outlier in any variable can arbitrarily bias

the LS estimator. Note, the asymptotic variance of the LS estimator is

Ω =

∫
IF (d, θLS(·), Fθ)IF (d, θLS(·), Fθ)

⊤dFθ

=

{∫ (
zz⊤ 0
0 zz⊤

)
dFθ

}−1{∫ (
ϵ2zz⊤ ϵvzz⊤

ϵvzz⊤ v2zz⊤

)
dFθ

}
dFθ

{∫ (
zz⊤ 0
0 zz⊤

)
dFθ

}−⊤

,

which is the usual “sandwich” form. When we further assume independence between the error

terms and the instrumental variables, we obtain

Ω =

{∫ (
zz⊤ 0
0 zz⊤

)
dFθ

}−1 ∫ (
ϵ2 ϵv
ϵv v2

)
dFθ.

4.3 Influence function of the test statistics

To derive the influence function of the test statistics (6), (8) and (9), we first need to write

them in functional form. This requires us to first write r(θ̂, β0) and D(θ̂, β0) in functional form.

For an arbitrary distribution function F on R2k, we define

r(F, β0) = δ(F )− π(F )β0,

D(F, β0) = π(F )− (Ωπδ − β0Ωππ)Ω(β0)
−1r(F, β0),

where δ(F ) = θ(F )(1) and π(F ) = θ(F )(2), which denote the first and second k-dimensional

components of θ(F ). Then we obtain r(θ̂, β0) = r(Fn, β0) and D(θ̂, β0) = D(Fn, β0). The

influence functions of the functionals r(·, β0) and D(·, β0) can easily be derived and are given

by

IF{d, r(·, β0), Fθ} = IF{d, δ(·), Fθ} − IF{d, δ(·), Fθ}β0, (17)

IF{d,D(·, β0), Fθ} = IF{d, δ(·), Fθ} − (Ωπδ − β0Ωππ)Ω(β0)
−1 IF{d, r(·, β0), Fθ}. (18)
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Similarly, we can introduce functional versions S(F, β0), K(F, β0) and CLR(F, β0) of the

test statistics (6), (8) and (9) and study their robustness properties. However, the test statistics

are not Fisher consistent. Consequently, when we derive the influence function of the test

statistics, they will always be zero. To circumvent this problem, we can analyze the influence

function of the square root of the statistics (Hampel et al., 1986). In Proposition 3, we derive

the influence function of the minimum distance CLR statistic (9).

Proposition 3. Under the null hypothesis β = β0, and (A.1) - (A.8) of Assumption 2, the

influence function of the CLR statistic, conditional on D(θ̂, β0) = D, is

IF
{
d;
√
CLR(·, β0), Fθ

}
=

IF
{
d;
√
S(·, β0), Fθ

}
, if D = 0,

IF
{
d;
√
K(·, β0), Fθ

}
, if D ̸= 0.

The influence functions of the S and K statistics, conditional on D(Fn, β0) = D, are given by

IF
{
d;
√
S(·, β0), Fθ

}
=

√
IF{d; r(·, β0), Fθ}⊤Ω(β0)−1 IF{d; r(·, β0), Fθ},

IF
{
d;
√
K(·, β0), Fθ

}
=

√
IF{d; r(·, β0), Fθ}⊤D {D⊤Ω(β0)D}−1D⊤ IF{d; r(·, β0), Fθ},

where

IF{d; r(·, β0), Fθ} = IF(d; δ(·), Fθ)− β0 IF(d; π(·), Fθ).

Proposition 3 shows that the influence function of the CLR statistic depends on the S and K

statistics. This is unsurprising because when D = 0, then the CLR statistic is the S statistic

so their influence functions must be the same in that case. When D ̸= 0, then Moreira (2003)

shows that the classical CLR test statistic converges to the Kleibergen (2002) K statistic,

which is why we see that same behavior in the influence function.

In Proposition 3, we see that the influence functions of the minimum distance robust tests

ultimately depend on the influence function of the estimator θ̂ = (δ̂⊤, π̂⊤)⊤. We immediately

see that the influence function of the tests are only bounded, when the influence function of

the estimators are bounded. In other words, the minimum distance robust tests inherit the
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robustness properties of the estimators they are constructed upon. When the influence function

of the estimator δ̂ or π̂ is unbounded, only one observation can bias them and corrupt all the

test statistics.

Note, instead of analyzing the influence function of the test statistic, it is also possible to

analyze the behavior of the level (or power) of the test under contamination and compare it

to the nominal level α0 (Heritier and Ronchetti, 1994). We show how this works for the test

ϕS. Define

FL
t,n =

(
1− t

n

)
Fθ +

t

n
∆d.

Then, the level of the test ϕS can be approximated by a functional of the form

α(FL
t,n) = 1−Hk{η1−α0 ;S(F

L
t,n, β0)},

with Hk{η1−α0 ;S(F
L
t,n, β0)} the cumulative distribution function of a χ2(k) distribution, and

η1−α0 is the 1 − α0 quantile of the χ2(k) distribution, where α0 denotes the nominal level.

Then, direct application of Proposition 5 in Heritier and Ronchetti (1994), gives

lim
n→∞

α(FL
t,n) = α0 + t2µ IF{d; r(·, β0), Fθ}⊤Ω(Fθ, β0)

−1 IF{d; r(·, β0), Fθ}+ o(t2) (19)

= α0 + t2µ IF
{
d;
√
S(·, β0), Fθ

}2

+ o(t2),

with µ = −[(∂/∂δ)Hk(η1−α0 ; δ)]δ=0. From (19) it becomes clear that if we want the level to be

stable in a neighborhood around the hypothesis, then we need to bound the influence function

of the test statistic and consequently the influence function of the estimator θ̂. Similar results

can be obtained tests ϕK , ϕW and ϕCLR.

Intuitively, it is not surprising that the stability of the level and power of the minimum

distance tests are closely to the robustness properties of the test statistic. When the influence

function of the estimator θ̂ is not bounded, then an outlier can arbitrarily bias this estima-

tor. This bias might result in a large movement of the test statistic and consequently large

distortions in the empirical level or power.
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4.4 Robustness properties in specific models

The result in Proposition 3 holds for a wide variety of models and ultimately depend on the

robustness properties of the estimator θ̂. Therefore, in this section, we study the influence

functions of different estimators θ̂ in several models that are used in practice (Finlay and

Magnusson, 2009; Magnusson, 2010). Consequently, using Proposition 3, we can study the

robustness properties of the (classical) test statistics (6), (8) and (9) in different instrumental

variable models.

4.4.1 The linear instrumental variable model

When we assume that y = y∗ and x = x∗ in the model (4) - (5), then we are in the set-

ting of a linear instrumental variable model. As we showed in Example 3, using the least

squares estimator to estimate θ and plugging the estimate into (6), (8) and (9) results in the

Anderson-Rubin, K and conditional likelihood ratio test statistics (Anderson and Rubin, 1949;

Kleibergen, 2002; Moreira, 2003). From (12), we see that the score function of the least squares

estimator is not bounded. As the influence function is proportional to the score function, we

conclude that the least squares estimator does not have a bounded influence function. There-

fore, using Proposition 3, we conclude that the classical AR, K and CLR statistics do not have

a bounded influence function. For this reason, one outlying observation can bias the estimator

θ̂ which will corrupt the test statistics. In Example 5, we explicity derive the influence function

of the Anderson-Rubin test.

Example 5. When we use the LS estimator for θ̂, then we obtain

IF{di, r(·, β0), Fθ} =

(∫
zz⊤dFθ

)−1

(yi − xiβ0).

Then, under the null hypothesis β = β0, the influence function of the statistic S(θ̂, β0) is

IF{di,
√
S(·, β0), Fθ} = |yi − xiβ0|

{(∫
zz⊤dFθ

)−⊤

Ω(β0)
−1

(∫
zz⊤dFθ

)−1
}1/2

,

which is unbounded.
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4.4.2 Endogenous probit, logit and Poisson models

We now study the robustness properties of the minimum distance robust tests in probit, logit

and Poisson models with endogeneity. In this case, we assume that the first stage (5) is fully

observed so that x = x∗. We assume that the second stage equation (4) can be modeled

according to a generalized linear model where we assume that y is distributed according to a

distribution that comes from the exponential family such that E[y] = µ and V[y] = V (µ) and

η = g(µ) = z⊤δ, (20)

where g is the link function (Nelder and Wedderburn, 1972). In this case, we can estimate

π via least squares estimation and δ with a quasi-likelihood estimator. The estimator θ̂ is a

solution of the estimating equations

1

n

n∑
i=1

Ψ(di, θ) =
1

n

n∑
i=1

[
(yi−µi)
V (µi)

µ′
i

(xi − z⊤i π̂)zi

]
= 0, (21)

where µ′
i denotes the derivative of µi with respect to δ. We obtain

IF(di, θ̂, Fθ) ∝

[
(yi−µi)
V (µi)

µ′
i

(xi − z⊤i π)zi

]
.

The score function is unbounded in xi and zi and also potentially unbounded in yi. Therefore,

by Proposition 3, the influence functions of the minimum distance robust test will also not be

bounded. In Example 6, we work out the details for the endogenous probit model introduced

in Example 1.

Example 6 (Endogenous probit model (cont.)). In case of the endogenous probit model, we

have y = 1(z⊤δ + ϵ > 0). So that

E[y] = E[1(z⊤δ + ϵ > 0)] = P[ϵ < z⊤δ] = Φ(z⊤δ),

V[y] = E[y2]− E[y]2 = Φ(z⊤δ)
{
1− Φ(z⊤δ)

}
.

Therefore, µ = Φ(z⊤δ), where Φ(·) denotes the cumulative standard normal distribution. For
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the influence function we obtain

IF(di, θ̂, Fθ) ∝

[
{yi−Φ(z⊤i δ)}µ′

i

Φ(z⊤i δ){1−Φ(z⊤i δ)}
(xi − z⊤i π)zi

]
.

As yi ∈ {0, 1}, the influence function is only unbounded in xi and zi.

4.4.3 Endogenous tobit model

We now study the robustness properties of minimum distance robust test in the endogenous

tobit model, see Example 2. The first-stage equation (4) is fully observed x = x∗. The second-

stage equation (4) is censored, as y = max(0, y∗). To construct the minimum distance robust

tests in this model, Magnusson (2010) uses the symmetrically censored least squares estimator

(Powell, 1986) for the estimation of δ. The estimator θ̂ is a solution to the estimating equations

1

n

n∑
i=1

Ψ(di, θ) =
1

n

n∑
i=1

[
1(z⊤i δ > 0)min(yi − z⊤i δ, z

⊤
i δ)

(xi − z⊤i π)zi

]
= 0.

The influence function is proportional to the score, so that

IF(di, θ̂, Fθ) ∝
[
1(z⊤i δ > 0)min(yi − z⊤i δ, z

⊤
i δ)

(xi − z⊤i π)zi

]
,

which is not bounded. By Proposition 3, the influence functions of the minimum distance

robust test statistics is also not be bounded. Therefore, only one outlying observations will be

able to bias the estimator θ̂ and also corrupt the minimum distance robust tests.

5 Robust inference

In the previous section, we showed that the robustness properties of the minimum distance

robust tests depend on the robustness properties of the estimators they are constructed upon.

To construct outlier robust tests, we need to use a bounded influence estimator for the estima-

tion of θ. For this purpose, we can use the large literature on robust M-estimation (Hampel

et al., 1986; Huber and Ronchetti, 2009) and software implementations thereof. For example,

in case of endogenous probit, logit, Poisson or tobit models, we can use robust M-estimators

designed for those models (Peracchi, 1990; Cantoni and Ronchetti, 2001).
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In the next section, we show how to construct outlier robust minimum distance tests in

a wide variety of models such as the linear instrumental variable model, the endogenous pro-

bit/logit model and the endogenous Poisson model. We do so, by assuming that both the first

and second-stage equations follow can be modeled according to a generalized linear model.

This allows us to leverage robust estimation techniques designed for those models (Cantoni

and Ronchetti, 2001). Note, in order to construct minimum distance robust tests, we need to

be able connect the latent and observed variables via the known functions f and h as explain

in Section 2. This connection between the latent and the observed variables via the functions

f and h is not possible for all generalized linear models. Fortunately, however, this is possi-

ble for many empirically relevant models, such as the linear instrumental variable model, the

endogenous probit/logit model (see Example 6) and the endogenous Poisson model.

5.1 Robust estimation

We assume that the observations y and x are distributed according to a distribution that comes

from the exponential family such that E[y] = µ1,V[y] = V (µ1), E[x] = µ2, V[x] = V (µ2),

g1(µ1) = z⊤δ and g2(µ2) = z⊤π, where g1 and g2 are link functions. We write µ1 = g−1
1 (z⊤δ)

and µ2 = g−1
2 (z⊤π) and let µ′

1 and µ′
2 denote their derivatives, with respect to δ and π,

respectively.

We consider a general class of M-estimators of Mallows type (Cantoni and Ronchetti, 2001).

The estimator θ̂ = (δ̂⊤, π̂⊤)⊤ solves the estimating equations

1

n

n∑
i=1

Ψ(di, µi) =
1

n

n∑
i=1

{
Ψδ(yi, µ1i)
Ψπ(xi, µ2i)

}
= 0, (22)

where

Ψδ(yi, µ1i) = ν1(yi, µ1i)w1(zi)µ
′
1i − a1,

Ψπ(xi, µ2i) = ν2(xi, µ2i)w2(zi)µ
′
2i − a2.

The functions ν1, ν2, w1 and w2 are weight functions (specified below) and the constants a1 and
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a2 make sure the estimator is Fisher consistent. We have

a1 =
1

n

n∑
i=1

E{ν1(y, µ1)|z = zi}w1(zi)µ
′
1i,

a2 =
1

n

n∑
i=1

E{ν2(x, µ2)|z = zi}w2(zi)µ
′
2i.

In Example 7, we show that the class of Mallows type M-estimators includes the least squares

and classical quasi-likelihood estimators (Wedderburn, 1974).

Example 7. Assume that w1(zi) = w2(zi) = 1 and that ν1(yi, µ1i) = yi−µ1i

V (µ1i)
and ν2(xi, µ2i) =

xi−µ2i

V (µ2i)
. Then, a1 = a2 = 0 so that we obtain the classical quasi-likelihood estimators. If we

further assume that both g1 and g2 are the identity functions, then µ1 = g−1
1 (z⊤δ) = z⊤δ and

µ2 = g−1
2 (z⊤π) = z⊤π, and µ′

1 = µ′
2 = z. In this case, θ̂ is a solution to

1

n

n∑
i=1

Ψ(di, µi) =
1

n

n∑
i=1

{
(yi − z⊤i δ)zi
(xi − z⊤i π)zi

}
= 0,

which is solved by the least squares estimators of δ and π.

When we analyze the influence function (16) it becomes clear that if we want to bound

the influence function of the estimator θ̂, then we need to bound the (general) score function

Ψ and consequently the functions ν1, ν2, w1 and w2 it depends upon. In the next section, we

give several options for the functions ν1, ν2, w1 and w2 introduced in (22) that can be used in

practice and result in a bounded influence function of the estimator.

5.2 Applied guidance

In practice, we suggest using the functions

ν1(yi, µ1i) = ψ(r1i)
1

V 1/2(µ1i)
,

ν2(xi, µ2i) = ψ(r2i)
1

V 1/2(µ2i)
,

with r1i =
yi−µ1i

V 1/2(µ1i)
and r2i =

xi−µ2i

V 1/2(µ2i)
. The function ψ(·) is an odd and bounded downweighting

function. A first good option for the function ψ(·) is to use the Huber function:

ψH(r; c) =

{
r, |r| ≤ c,

c · sgn(r), |r| > c.
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The tuning parameter c is typically set to c = 1.345 to ensure a high level of asymptotic

efficiency. Another good option is to use Tukey’s biweight function instead of the Huber

function. Tukey’s biweight function is defined as

ψT (r; c) =

r
(
1− r2

c2

)2

, for |r| ≤ c,

0, for |r| > c.
(23)

The tuning parameter c is typically set to c = 4.685 to ensure a high level of asymptotic

efficiency. Tukey’s biweight function downweights large outlying observations to zero, which

makes it a very robust option. However, in contrast to the Huber loss function, Tukey’s loss

function is not convex, which makes the optimization problem more difficult.

To downweight outliers in the covariate space, we suggest using the weight function w1(zi) =

w2(zi) =
√
1− hi, where hi denotes the i-th diagonal element of the “hat” matrix H =

Z(Z⊤Z)−1Z⊤. Weights based on the hat matrix are easy to compute and ensure a bounded

influence function. However, using these weights does not result in an estimator with a high

breakdown point, i.e., the estimator can only resist a few outlying observations. If the user

wants a high breakdown point, we suggest using weights based on the inverse Mahalanobis

distance d(zi) =
√

(zi − µ̂Z)⊤Σ̂
−1
Z (zi − µ̂Z), where the multivariate location µ̂Z and scatter Σ̂Z

of the matrix Z are estimated with the Minimum Covariance Determinant (MCD) estimator

(Rousseeuw and Driessen, 1999). We then define

w(zi) =

{
1, if d(zi) ≤ c̃,

c̃/d(zi), if d(zi) > c̃,

and let w1(zi) = w2(zi) = w(zi). Under a normality assumption, the squared Mahalanobis

distance is asymptotically χ2 distributed. Therefore, in practice it is common to use the

square root of the 0.95-quantile of the χ2 distribution with k degrees of freedom, where k

denotes the number of columns of the matrix Z. Economic data often contains discrete data.

In that case, computation of the MCD estimator can become infeasible and we suggest using

the weights based on the hat matrix.

In practice, the estimation of δ and π is typically done separately. In this case, the function
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glmrob() from the R package robustbase can be used for robust estimation with weights as

defined above in generalized linear models (Maechler et al., 2023) allowing us to obtain the

estimates of π, δ,Ωδδ and Ωππ. The user only needs to obtain an estimate of Ωδπ. However,

in a large class of empirically relevant models where x = x∗, a control function approach

(Magnusson, 2010) can be used that does not require the direct estimation of Ωδπ (see Appendix

B for details).

6 Simulation

In this section, we analyze the finite sample behavior of the outlier robust minimum distance

tests and compare them to their classical counterparts. The outlier robust tests are based on

Mallows type M-estimators using the Huber function and hat matrix weights as explained in

Section 5.2 (see Appendix B for implementation details). We analyze the behavior of the tests

in the linear instrumental variable model and the endogenous probit model. We consider a

baseline environment without contamination and two contaminated environments, where we

add outliers to the data.

In the baseline environment, we generate 10,000 random samples of n = 250 observations

drawn from the following the following model:

x = z1π1 + 0 · z2 + 0.5 · w + v, (24)

y∗ = βx+ 0.3 · w + u, (25)

where v = v1 + 0.5 · u. We generate z1, z2, w, v1 and u from independent standard normal

distributions. The value of π1 is set according to the first-stage F -statistic. We have F ≈ nπ2
1

2σ2
v

so that we let

π1 =

√
2σ2

vF
∗

n
,

allowing us to control the strength of the instruments in different simulation designs via F ∗.
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We study the behaviour of our robust tests in two different models. We consider the linear

IV model in which we observe y = y∗ and the endogenous probit model in which we observe

y = 1({y∗ > 0}). In the linear IV model, the classical tests are constructed upon the least

square estimator, which leads to the classical AR, K and CLR tests (see Example 3). For the

endogenous probit model, the classical test is constructed upon a quasi-likelihood estimate of

δ and a least squares estimate of π. In both models, the robust tests are constructed upon a

Mallows type M-estimator based on the Huber function and hat matrix weights as explained

in Section 5.2. Note, we construct both the classical and robust tests using a control function

approach as explained in Section 5.2 and Appendix B.

Next, we explain how we generate the environment that is contaminated by an outlier. In

this environment, we generate data exactly the same as in the baseline environment. Then

for each random sample, we change the first data row to (y1, x1, z11, z21, w) = (25, 10, 3, 3, 3)

for the linear IV model and for the endogenous probit model we change the first data row to

(y1, x1, z11, z21, w) = (0, 10, 3, 3) as the range of y is then limited to 0 or 1.

At last, we explain how we generate an environment with “distributional” contamination

in the error terms. In this case, we replace the first 50 observations (20% of the observations)

of v1 and u with draws from a t(3) distribution. This will sometimes generate large outlying

observations in the error terms.

6.1 Sensitivity of the power

In Figure 1, we present the power curves of the robust CLR test compared to the classical

CLR test in the two different models without outliers. We see that in each model, the classical

test is more powerful than the robust test. This is expected, as the robust M-estimators are

less efficient than the classical estimators when there are no outliers in the data. This leads to

more powerful tests when there are no outliers in the data. However, we see in Figure 1 that

the loss of power is not very large. Therefore, the trade-off between robustness and efficiency

does not come at a large cost.
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Figure 1: Power curves of the robust test and its classical version that tests H0 : β = 0 for
various values of β in the linear instrumental variable model and the endogenous probit model.
Baseline environment without contamination.

In Figure 2, we present the power curves of the robust test and the classical test in the two

different models when there is an outlier in the data. First, we note that the power curves of

the robust tests are almost not affected by the outlier when we compare them to the power

curves in Figure 1. This is, however, not the case for the classical tests. In case of the linear

IV model, the outlier biases the least squares estimators π̂ and δ̂. As the classical test is

constructed upon these estimates, it will corrupt the classical test. We have that β0 = 0, so

that we obtain r(θ̂, β0) = δ̂−π̂β0 = δ̂. Therefore, only the biased estimator δ̂ will have an effect

on r(θ̂, β0). If we assume, for simplicity, that we only have one instrumental variable, then we

would have δ̂ = δ + b, where b denotes a scalar bias term. Therefore, we have r(θ̂, β0) = 0

when δ + b = πβ + b = 0, which holds when β = −b/π. In our case, the outlier introduces

a positive bias so that r(θ̂, β0) = 0 at a negative β value, which is why the power curve of

the classical test shifts to the left. For the robust tests, the bias is very close to zero, so that

the we obtain r(θ̂, β0) = 0 when β ≈ 0. In case of the probit model, we do not have a large
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Figure 2: Power curves of the robust test and its classical version that tests H0 : β = 0 for
various values of β in the linear instrumental variable model and the endogenous probit model.
Environment with contamination by an outlier.

outlier in y so that the estimator δ̂ is not biased. Moreover, as β0 = 0, the biased estimator π̂

is not used to compute r(θ̂, β0). Therefore, we do not see a large shift of the power curve in

the probit model. However, we do see that for positive values of β, the classical test is much

less powerful than the robust test. When β0 ̸= 0, then we would also see a large overrejection

at the null in the probit model as we show in the next section.

In Figure 3, we present the power curves of the robust test and the classical test in the

two different models when there is “distributional” contamination in the error terms. In this

case, we see that the robust tests are more powerful than the classical tests in both models.

This happens, because the errors that are drawn from the t(3) distribution sometimes generate

large outliers. The robust tests can effectively downweight these outliers, which results in more

power compared to the classical test. Note, the observations from the t(3) distribution do not

bias the classical estimators δ̂ and π̂ as the t(3) distribution is symmetric. Therefore, we do

not see shifts in the power curves.
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Figure 3: Power curves of the robust test and its classical version that tests H0 : β = 0 for
various values of β in the linear instrumental variable model and the endogenous probit model.
Environment with contamination in the error terms.

6.2 Sensitivity of the level

In Tables 1, 2 and 3 we present additional simulation evidence that shows good performance of

the empirical size of the robust S,K and CLR tests when there is contamination by an outlier.

We analyze the behavior of the level of the tests in the linear instrumental variable model and

the endogenous probit model. The baseline and outlier-contaminated environments are exactly

the same as before. The only difference is that we now consider two different values for F ∗.

We consider F ∗ = 5 and F ∗ = 20 to mimic a setting with weak and and strong instruments,

respectively.

In Table 1, we present the results in the linear IV model. In this case, we see that both the

robust and nonrobust tests remain size correct when there is no outlier in the data. However,

when there is an outlier in the data we see that the nonrobust tests are not size correct

anymore and largely overreject the null hypothesis. In contrast, the robust tests remain more

reliable. The robust tests do overreject more compared to baseline environment. However, the
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amount of overrejection is not very problematic and shows that the level remains stable in a

neighborhood of the model.

Table 1: Size comparison (in percentage) H0 : β = 0, linear instrumental variable model with
and without outlier.

F ∗ = 5 F ∗ = 20
No outlier Outlier No outlier Outlier

Nominal level 10 5 1 10 5 1 10 5 1 10 5 1

S 10.22 5.18 1.18 98.89 95.98 76.68 10.22 5.18 1.18 98.89 95.98 76.68
K 10.13 4.90 1.20 70.77 59.55 35.36 10.13 4.98 1.12 81.16 68.00 34.58
CLR 10.01 4.91 1.23 88.10 80.69 56.65 10.10 4.92 1.14 85.45 74.00 42.99
RS 10.00 5.30 1.14 13.74 7.29 1.93 10.00 5.30 1.14 13.87 7.36 1.95
RK 9.95 5.02 1.13 12.24 6.74 1.81 10.04 5.00 1.16 12.46 6.92 1.73
RCLR 9.90 5.01 1.20 12.70 7.02 1.98 9.99 4.93 1.18 12.55 6.97 1.78

In Table 2, we present the results of the endogenous probit model. In this case, we see

that the empirical size of the robust test remains reliable in all settings. We see that the

nonrobust test is size correct in the setting without the outlier. In the setting with the outlier,

the nonrobust only slightly overrejects in the probit model. This happens because the outlier

that we introduced for the probit, in contrast to the linear IV model, does not bias the estimate

of δ. The estimate of π is biased. However, as we are testing whether β = 0 so that β0 = 0 we

have that r(θ̂, β0) = δ̂ − π̂β0 = δ̂ so that even if the estimate of δ is biased it does not affect

the size of the tests much as long as the estimate of δ is correct. This is, however, coincidental

and if we would test H0 : β = β0 with β0 ̸= 0 we would see a larger rejection rates for the

nonrobust tests. In Table 3, we present the results of a simulation study where we test the

null hypothesis H0 : β = 0.2 for the probit model. In this case, we see that the outlier has a

large effect on the empirical size of the nonrobust tests causing larger overrejections.

7 Empirical examples

In this section, we show how the robust tests can be used in practice by revisiting three empir-

ical studies. First, we consider the data and several specifications in Alesina and Zhuravskaya

(2011) who examine the effect of segregation on the quality of government. Second, we revisit

the main specifications considered in Ananat (2011) where the effect of (racial) segregation
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Table 2: Size comparison (in percentage) H0 : β = 0, endogenous probit model with and
without outlier.

F ∗ = 5 F ∗ = 20
No outlier Outlier No outlier Outlier

Nominal level 10 5 1 10 5 1 10 5 1 10 5 1

S 10.48 5.00 0.94 12.53 6.58 1.39 10.48 5.00 0.94 12.47 6.49 1.36
K 10.31 5.55 1.10 12.92 6.85 1.69 10.39 5.35 1.08 12.54 6.57 1.59
CLR 10.29 5.41 1.06 12.71 6.87 1.75 10.14 5.45 1.11 12.47 6.65 1.56
RS 9.82 4.83 0.90 10.20 5.12 0.89 9.82 4.83 0.90 10.25 5.15 0.89
RK 10.21 5.12 0.95 10.44 5.31 0.99 10.10 4.97 0.99 10.48 5.27 1.01
RCLR 10.21 4.97 0.95 10.54 5.36 0.92 10.06 5.02 0.97 10.52 5.25 1.02

Table 3: Size comparison (in percentage) H0 : β = 0.2, endogenous probit model with and
without outlier.

F ∗ = 5 F ∗ = 20
No outlier Outlier No outlier Outlier

Nominal level 10 5 1 10 5 1 10 5 1 10 5 1

S 9.89 4.82 0.83 22.66 12.70 3.61 9.91 4.74 0.84 22.81 13.07 3.29
K 10.25 5.00 0.84 23.48 14.28 3.98 10.21 5.21 0.85 21.64 13.22 3.76
CLR 10.26 4.95 0.79 23.78 14.47 3.97 10.27 5.22 0.87 21.68 13.25 3.80
RS 9.40 4.39 0.64 9.75 4.52 0.67 9.32 4.46 0.74 9.64 4.74 0.76
RK 9.93 5.01 0.80 10.39 5.26 0.85 10.06 4.71 0.74 10.66 5.26 0.87
RCLR 9.92 4.94 0.76 10.38 5.08 0.80 10.03 4.74 0.75 10.57 5.37 0.89

on urban poverty and inequality is studied. Finally, we revisit the Staiger and Stock (1997)

specifications for the Angrist and Krueger (1991) data where the effect of education on labor

market earnings is studied.

7.1 Alesina and Zhuravskaya (2011)

Alesina and Zhuravskaya (2011) study the effect of segregation on the quality of government in

a cross section of countries using a linear instrumental variable model. They find that ethnically

and linguistically segregated countries have a lower quality of government. Furthermore, they

find that there is no relationship between religious segregation and governance. To address

endogeneity concerns caused by mobility and endogeneous internal borders, an instrument is

constructed for segregation. For more information, data and the construction of the instrument

we refer to Alesina and Zhuravskaya (2011).

In Section 5D Alesina and Zhuravskaya (2011) mention that they carefully examined
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Table 4: Results using data from Alesina and Zhuravskaya (2011). Specifications correspond
to the specifications in Panel D of Table 7 in Alesina and Zhuravskaya (2011). Confidence
sets are given for the parameter belonging to endogeneous regressor (x) “Segregation” for six
different specifications (y). The RAR confidence sets are calculated based on Mallows type
estimator based on the Huber function and “hat” matrix weights as in Section 5.2.

Language

Specification I II III IV V VI

Voice
Political
stability

Government
effectiveness

Regulatory
quality

Rule of law
Control of
corruption

95% AR confidence set [−6.04,−0.93] [−5.73,−1.01] [−3.70, 0.79] [−4.86, 2.20] [−3.62, 0.52] [−3.48, 1.81]

95% RAR confidence set [−7.40,−0.04] [−6.10, 2.48] [−3.41, 1.38] [−2.32, 4.37] [−3.32, 3.28] [−3.84, 1.90]

All control variables Yes Yes Yes Yes Yes Yes

No. of observations 92 92 92 92 92 92

First-stage F 17.22 17.22 17.22 17.22 17.22 17.22

whether a handful of influential observations drive their results. By exluding influential ob-

servations and recalculating their statistics they conclude that this is not the case. However,

Alesina and Zhuravskaya (2011) mention that in the specifications of Panel D in Table 7 re-

moving two influential observations leads to the first-stage F -statistic dropping from 17.22 to

7.82 making inference based on 2SLS estimator unreliable (Staiger and Stock, 1997). Alesina

and Zhuravskaya (2011) solve this by also removing the most influential observation in the first

stage from the data so that the instrument becomes“strong enough”. Note, manually removing

outliers from the data and then relying on classical statistical methods is not recommended for

several reasons such as masking effects and underestimated variability and it is advisable to

rely on a robust method from the start (Maronna et al., 2019, Section 4.3). It seems that the

2SLS estimator might be unreliable due to the outliers and the weak instrument. Therefore, to

re-evaluate the robustness of the results, we apply our test to six specifications (“Voice”, “Po-

litical stability”, “Government effectiveness”, “Regulatory Quality”, “Rule of law” and “Control

of corruption”) of Panel D in Table 7 of Alesina and Zhuravskaya (2011). As there is only one

instrument, we calculate the 95% confidence sets of the robust AR statistic and the (classical)

AR statistic. The results are reported in Table 4.
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From Table 4 we can see that in specifications II, III, IV and V that the confidence set of

the robust AR confidence set is shifted compared to the AR confidence set. This suggests that

outliers did have an effect in these regressions as we would expect the confidence set of the

robust AR test to be wider than the confidence set of the AR test when there are no outliers,

but not shifted. The shift of the confidence set suggests that the LS estimators the AR test is

constructed upon are biased due to the outlier(s). Therefore, the confidence sets based on the

robust AR are more reliable. Overall, the outliers do not seem to be very problematic as in all

specifications, except specification II, the final decision whether to reject or not reject the null

hypothesis H0 : β = 0 remains the same. When we analyze specification II, we see that the

robust confidence set would not reject the null hypothesis, while the classical confidence set

would reject the null hypothesis. In this case, it does seem the outliers are the main drivers of

the significant result.

7.2 Ananat (2011)

Ananat (2011) studies the effect of racial segregation on urban poverty and inequality using a

linear instrumental variable model. To overcome endogeneity issues, a railroad division index

is used to instrument for racial segregation. Using this instrumental variable, Ananat (2011)

shows that segregation increases metropolitan rates of black poverty and overall black-white

income disparities, while decreasing rates of white poverty and inequality within the white

population. For more information, data and the construction of the instrument we refer to

Ananat (2011).

Klooster and Zhelonkin (2023) show that an outlier in the control variable used in the main

results of Ananat (2011) inflates the first-stage F -statistic from 1.83 to 19.32. As the outlier

was not taken into account in the original study, it was assumed that the instrument was

strong. Consequently, estimation was done with a 2SLS estimator and inference with a t-test.

Due to the outlier (and the weak instrument) inference based on the 2SLS estimator might be

unreliable. Therefore, to re-evaluate the robustness of the results, we apply our test to the four
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Table 5: Results using data from Ananat (2011). Specifications correspond to the specifications
in columns (3) and (4) in Table 2 in Ananat (2011). Confidence sets are given for the parameter
belonging to endogeneous regressor (x) “Segregation” for four different specifications (y). The
RAR confidence sets are calculated based on Mallows type estimator based on the Huber
function and “hat” matrix weights as in Section 5.2.

Specification I II III IV

Gini index
whites

Gini index
blacks

Poverty rate
whites

Poverty rate
blacks

95% AR confidence set (−0.64,−0.18) (0.22, 2.15) (−0.38,−0.09) (0.00, 0.48)

95% RAR confidence set
(−∞,−0.12)
∪(1.62,∞)

(−∞,−3.79)
∪(0.19,∞)

(−∞,−0.08)
∪(0.90,∞)

(−∞,∞)

First-stage F 19.32 19.32 19.32 19.32

No. of observations 121 121 121 121

main specifications (“Gini index whites”, “Gini index blacks”, “Poverty rate whites”, “Poverty

rate blacks”), which can be found in columns (3) and (4) of Table 2 in Ananat (2011). As

there is only one instrument, we calculate the 95% confidence sets of the robust AR statistic

and the (classical) AR statistic. The results are reported in Table 5.

When we analyze Table 5, we find large differences between the robust and classical confi-

dence sets. When there are no outliers in the data, we would expect that the robust confidence

sets are only a bit wider than the classical confidence sets. However, in this case, the classical

confidence sets are bounded convex sets, while the robust confidence sets are unbounded sets.

The shape of the robust confidence sets do correctly suggest that the instrument is weak. In

this example, the outlier does have a large effect and we recommend using the robust confidence

sets for reliable inference.

7.3 Angrist and Krueger (1991)

Angrist and Krueger (1991) study the effect of education on labor market earnings using a linear

instrumental variable model. To adress endogeneity issues, quarter of birth instruments are

constructed for education. Using these instrumental variables they find a positive relationship
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between years of education and labor market earnings. We revisit four specifications presented

in Table 2 of Staiger and Stock (1997) based on the 1930 - 1939 cohort. For more information,

data and the construction of the instrument, we refer to Staiger and Stock (1997) and Angrist

and Krueger (1991).

Bound et al. (1995) showed that the relationship between the instruments and the en-

dogeneous regressor is quite weak in certain specifications of Angrist and Krueger (1991).

Furthermore, more recently, Sølvsten (2020) shows that the LIML residuals of the structural

equation of a certain specification in Angrist and Krueger (1991) are distributed roughly like

a normal distribution at the center with outlying errors that closely follow a t(3)-distribution

(reminiscent of the “distributional” contamination scenario in Section 6). Due to the weak in-

struments (and possible outliers), inference based on the 2SLS estimator used by Angrist and

Krueger (1991) might be unreliable. Moreover, due to outliers, weak instrument robust tests

might be corrupted and/or inefficient. Therefore, to re-evaluate the robustness of the results

we replicate the results reported in Panel A of Table 2 in Staiger and Stock (1997). For each

specification, we give the 95% confidence set of the CLR and robust CLR, and the first-stage

F -statistic. The results are reported in Table 6.

When we compare the 95% confidence sets of the CLR and RCLR statistics, we note that

the RCLR confidence sets are smaller than the CLR confidence sets in every specification. This

happens because the RCLR statistic effectively downweights outlying values in the residuals.

Similar as in the “distributional” contamination scenario in Section 6 this results in better

variance estimates and hence tighter confidence sets.

8 Conclusion

In this article, we proposed a general framework to construct weak instrument robust testing

procedures that are also robust to outliers in a general class of limited dependent instrumental

variable models. The framework is constructed upon M-estimators and we showed that the
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Table 6: Results for Angrist and Krueger (1991) data. Specifications as in Table 2 of Staiger
and Stock (1997), except for specification III (see the note below). Confidence sets are given
for the parameter belonging to the endogeneous regressor (x) “Years of schooling” for four
different specifications that all use the same dependent variable (y) “log weekly wages”. The
RCLR confidence sets are calculated based on Mallows type estimator based on the Huber
function and “hat” matrix weights as in Section 5.2. QOB, YOB and SOB stand for quarter,
year and state of birth.

Specification I II III∗ IV

95% CLR confidence set [0.042, 0.137] [0.026, 0.116] [−0.064, 0.279] [−0.068, 0.266]

95% RCLR confidence set [0.047, 0.122] [0.032, 0.101] [−0.038, 0.190] [−0.048, 0.180]

First-stage F 30.53 4.74 2.43 1.87

controls (w)

Base controls Yes Yes Yes Yes

SOB No No Yes Yes

Age, Age2 No No No Yes

Instruments (z)

QOB Yes Yes Yes Yes

QOB*YOB No Yes Yes Yes

QOB*SOB No No Yes Yes

No. of instruments 3 30 180 178

Observations 329,509 329,509 329,509 329,509

*This specification slightly different from specification III of Table 2 in Staiger and Stock (1997).
Instead of using Age and Age2 as control variables, we use the SOB controls instead. This was
done as we encountered some small numerical difficulties when replicating the original specification
leading to unusual confidence sets for both the CLR and RCLR tests.
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classical weak instrument robust tests, such as the AR, K and CLR tests, can be obtained

by specifying the M-estimators to be the LS estimators. We formally showed that influence

function of the minimum distance test statistics are only bounded when the influence function

of the estimators they are constructed upon is bounded. As all classical minimum distance

robust tests are constructed upon estimators that do not have a bounded influence function,

we showed how to construct robust alternatives. In particular, we showed how to construct

minimum distance robust tests based on a Mallows type M-estimator that allows reliable

inference in a wide variety of models, including the linear IV model and the endogenous probit

model. By means of a simulation study, we documented good performance of our robust tests

in different contaminated environments. Finally, we illustrated how the robust tests can be

used in practice by revisiting three different empirical studies.
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Appendix A

Proof of Proposition 1

Proof. Under Assumption 1, we have

√
n

(
δ̂
π̂

)
d→ N

{(
δ
π

)
,

(
Ωδδ Ωδπ

Ωπδ Ωππ

)}
.

We can use the continuous mapping theorem to show that, under the null hypothesis, we have

r(θ̂, β0)
p→ r(θ, β0) = δ − πβ0 = πβ − πβ0 = 0.

We can write

r(θ̂, β0) =
(
Ik −β0Ik

)(δ̂
π̂

)
.

We obtain

√
nr(θ̂, β0)

d→ N
{
0,
(
Ik −β0Ik

)(Ωδδ Ωδπ

Ωπδ Ωππ

)(
Ik

−β0Ik

)}
= N {0,Ω(β0)}

where Ω(β0) = Ωδδ − β0(Ωδπ + Ωπδ) + β2
0Ωππ.

We conclude that under the null hypothesis and Assumption 1, that

S(θ̂, β0) = nr(θ̂, β0)
⊤Ω(β0)

−1r(θ̂, β0)
d→ χ2(k).

Proof of Lemma 1

Proof. Under Assumption 1, we have

√
n

(
δ̂
π̂

)
d→ N

{(
δ
π

)
,

(
Ωδδ Ωδπ

Ωπδ Ωππ

)}
.

We can use the continuous mapping theorem to show that, under the null hypothesis, we have

D(θ̂, β0)
p→ D(θ, β0) = π.

37



We can write{
Ik −β0Ik

− (Ωπδ − Ωππβ0) Ω(β0)
−1 (Ωπδ − Ωππβ0) Ω(β0)

−1β0 + Ik

}(
δ̂
π̂

)
=

{
r(θ̂, β0)

D(θ̂, β0)

}
.

After some algebra, we can conclude that

√
n

{
r(θ̂, β0)

D(θ̂, β0)

}
d→ N

[(
0
π

)
,

{
Ω(β0) 0
0 Λ(β0)

}]
,

with Λ(β0) = Ωππ − (Ωπδ − β0Ωππ)Ω(β0)
−1(Ωδπ − β0Ωππ).

Proof of Proposition 2

Proof. From Lemma 1 it directly follows that under the null hypothesis π = 0 and β = β0, we

have W (θ̂, β0)
d→ χ2(k).

To derive the asymptotic distribution ofK(θ̂, β0), we follow similar arguments as in Kleiber-

gen (2005). From Lemma 1, we have

√
nr(θ̂, β0)

d→ N ∼ N{0,Ω(β0)}

We denote the asymptotic distribution of D(θ̂, β0) by D, i.e.,
√
nD(θ̂, β0)

d→ D ∼ N{π,Λ(β0)}.

Then
√
nD(θ̂, β0)

⊤√nr(θ̂, β0)
d→ D⊤N . The conditional distribution of D⊤N given D reads

D⊤N
∣∣D ∼ N{0, D⊤Ω(β0)D}.

From Lemma 1, we know that D is independent of N as they are jointly normally distributed

and uncorrelated. Therefore, we obtain an unconditional result by normalizing the expression

by {D⊤Ω(β0)D}−1/2,

{D(θ̂, β0)
⊤Ω(β0)D(θ̂, β0)}−1/2D(θ̂, β0)

⊤√nr(θ̂, β0)

= {
√
nD(θ̂, β0)

⊤Ω(β0)
√
nD(θ̂, β0)}−1/2

√
nD(θ̂, β0)

⊤√nr(θ̂, β0)

d→ {D⊤Ω(β0)D}−1/2D⊤N ∼ N (0, 1).

Therefore, K(θ̂, β0)
d→ χ2(1).
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At last, we derive the asymptotic distribution of the CLR(θ̂, β0) statistic, conditional on

D(θ̂, β0) = D. We define Û = Ω(β0)
−1/2r(θ̂, β0) and R̂ = Ω(β0)

−1/2D(θ̂, β0). By Lemma 1, the

asymptotic distribution of
√
n
(
Û R̂

)⊤
is jointly normal with zero covariance. Let R denote

the asymptotic distribution of
√
nR̂ and U the asymptotic distribution of

√
nÛ , then we know

that U and R are independent. Moreover, we have S(θ̂, β0) = nÛ⊤Û and K(β0) = nÛ⊤PR̂Û ,

where PR̂ = R̂(R̂⊤R̂)−1R̂. We can write S(θ̂, β0) = K(θ̂, β0) + J(θ̂, β0), with

J(θ̂, β0) = nÛ⊤(Ik − PR̂)Û

It holds that (Ik − PR̂)
−1/2

√
nÛ

d→ (Ik − PR)
−1/2U , with U ∼ N (0, Ik). The conditional

distribution of (Ik − PR)
−1/2U given R = Ω(β0)

1/2D reads

(Ik − PR)
−1/2U

∣∣R ∼ N (0, Ik − PR).

We know that R is independent of N by Lemma 1. Therefore, the result also holds uncondi-

tionally. Furthermore, as the rank of Ik − PR is tr(Ik − PR) = k − 1, we have

J(θ̂, β0)
d→ χ2(k − 1).

The asymptotic distribution of K(θ̂, β0) and J(θ̂, β0) are independent, as J(θ̂, β0) projects on

the orthogonal complement of R̂. Now the result follows.

Proof of Proposition 3

Proof. We denote the functional form of the minimum distance statistics as S(F ), K(F ),W (F )

and CLR(F ), where for simplicity we suppressed the dependency on β0 in all the test statistics.

Let G be an arbitrary distribution function and define W = D⊤Λ(β0)
−1D. The functional

form of the CLR statistic, conditional on D is

CLR(G) =
1

2

[
S(G)−W +

√
{S(G)−W}2 + 4W ·K(G)

]
.

To simplify the notation, we write

A(G) = {S(G)−W}2 + 4W ·K(G),
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so that

CLR(G) =
1

2

{
S(G)−W +

√
A(G)

}
.

We start with the case D ̸= 0. In this case it must hold that W > 0 and as A(Fθ) = W 2,

we have CLR(Fθ) = 0. To calculate the first derivative, note that

∂

∂t
CLR(Ft)

∣∣∣
t=0

=
1

2

{
∂

∂t
S(Ft)

∣∣∣
t=0

+
1

2
√
A(Fθ)

· ∂
∂t
A(Ft)

∣∣∣
t=0

}
.

We know that ∂
∂t
S(Ft)

∣∣
t=0

= 0, and

∂

∂t
A(Ft)

∣∣∣
t=0

= 2 {S(Fθ)−W} ∂

∂t
S(Ft)

∣∣∣
t=0

+ 4W
∂

∂t
K(Ft)

∣∣∣
t=0

= 0,

as ∂
∂t
S(Ft)

∣∣
t=0

= 0, and ∂
∂t
K(Ft)

∣∣
t=0

= 0. Furthermore, as W > 0, we have

A(Fθ) = {S(Fθ)−W}2 + 4WK(Fθ) = (0−W )2 + 0 = W 2.

Hence, A(Fθ) > 0 so that we are not dividing by zero. It thus follows that

∂

∂t
CLR(Ft)

∣∣∣
t=0

= 0.

Next, we calculate the second derivative. We have

∂2

∂t2
CLR(Ft)

∣∣∣
t=0

=
1

2

{
∂2

∂t2
S(Ft)

∣∣∣
t=0

+
1

2W

∂2

∂t2
A(Ft)

∣∣∣
t=0

}
,

where we used the results that ∂
∂t
A(Ft)

∣∣
t=0

= 0 and A(Fθ) = W 2. We continue and obtain

∂2

∂t2
A(Ft)

∣∣∣
t=0

= 2

{
∂

∂t
S(Ft)

∣∣∣
t=0

}2

− 2W
∂2

∂t2
S(Ft)

∣∣∣
t=0

+ 4W
∂2

∂t2
K(Ft)

∣∣∣
t=0

= −2W
∂2

∂t2
S(Ft)

∣∣∣
t=0

+ 4W
∂2

∂t2
K(Ft)

∣∣∣
t=0
.

Substituting this back into the previous equation, it follows that

∂2

∂t2
CLR(Ft)

∣∣∣
t=0

=
1

2

 ∂2

∂t2
S(Ft)

∣∣∣
t=0

+
4W ∂2

∂t2
K(Ft)

∣∣∣
t=0

− 2W ∂2

∂t2
S(Ft)

∣∣∣
t=0

2W


=

∂2

∂t2
K(Ft)

∣∣∣
t=0
.
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Therefore, using L’Hôpital’s rule twice, the influence function of the CLR statistic, given

W̃ > 0, is

IF{d;
√
CLR,F} = lim

t→0

{√
CLR(Ft)−

√
CLR(F )

}
/t

=
{
lim
t→0

CLR(Ft)/t
2
}1/2

=

{
1

2

∂2

∂t2
CLR(Ft)

∣∣∣
t=0

}1/2

=

{
1

2

∂2

∂t2
K(Ft)

∣∣∣
t=0

}1/2

= IF(d;
√
K,F ).

Next, we assume D = 0. In this case W = 0, so that

CLR(G) = S(G).

Hence,

IF(d;
√
CLR,F ) = IF(d;

√
S, F ),

and the result follows.

We continue with deriving the influence function of the S and K statistics, conditional

on D(Fn, β0) = D. We have ∂
∂t
S(Ft)

∣∣
t=0

= 2 IF{d; r(·, β0), Fθ}⊤Ω(β0)−1r(Fθ, β0) = 0, as

r(Fθ, β0) = 0 due to Fisher consistency. The second derivative gives

∂2

∂t2
S(Ft)

∣∣∣
t=0

= 2 IF{d; r(·, β0), Fθ}⊤Ω(β0)−1 IF{d; r(·, β0}, Fθ).

Using L’Hôpital’s rule twice, we obtain

IF(d;
√
S, Fθ) = lim

t→0

{√
S(Ft)−

√
S(F )

}
/t

=
{
lim
t→0

S(Ft)/t
2
}1/2

=

{
1

2

∂2

∂t2
S(Ft)

∣∣
t=0

}1/2

=
√
IF{d; r(·, β0), Fθ}⊤Ω(Fθ, β0)−1 IF{d; r(·, β0), Fθ}.
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The K statistic, conditional on D(Fn, β0) = D, follows exactly the same arguments so we

omit this derivation. We obtain

IF(d;
√
K,F ) =

√
IF{d; r(·, β0), Fθ}⊤D {D⊤Ω(β0)D}−1D⊤ IF{d; g(·, β0), Fθ}.

At last, we have

IF{d; r(·, β0), Fθ} = IF{d; δ(·), Fθ} − β0 IF{d; π(·), Fθ}.

Appendix B

Details of the practical implementation

For the implementation, we follow the algorithm presented in Section 4 of the Appendix in

Magnusson (2010). Specifically, we use a control function approach. In this case, we consider

the model {
y∗ = βx+ αv + ϵ

x = z⊤π + v

{
y∗ = z⊤δ + δvv + ϵ

x = z⊤π + v,
(26)

with δv = α + β and ϵ = u − vα. Magnusson (2010) shows that in this case, it holds that

Ωπδ = Ωππ(δv⊗Ik). This is beneficial, as built-in software package typically are able to provide

an estimate of the matrix Ωππ, but not of Ωπδ.

For the (robust) tests that we consider in the simulation study in Section 6, we use the

following steps:

1. Estimate π and Ωππ using a robust M-estimator. We use a Mallows type M-estimator

with “hat” matrix weights and using the Huber downweighting function. We use the

rlm() function from the R package MASS (Venables and Ripley, 2002) with the default

settings to obtain the estimates π̂ and Ω̂ππ. Moreover, we keep the residuals from the

robust regression and denote them by v̂.

2. Estimate δ, δv and Ωδδ from the following equation

y = f(z⊤δ + δvv̂ + ϵ̃),
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where ϵ̃ = ϵ− (v̂ − v)δv and f is the known function. For the estimation, we use a Mal-

lows type M-estimator with “hat” matrix weights and we use the Huber downweighting

function. Note, to compute the hat matrix, we also include the residuals v̂.

• In case of the linear IV model, we use the function rlm() from the R package MASS

(Venables and Ripley, 2002) with the default settings to obtain the estimates δ̂, δ̂v

and Ω̂δδ.

• In case of the probit, logit and Poisson model, we use the function glmrob() from

the R package robustbase (Maechler et al., 2023).

3. We estimate Ω̂πδ = δ̂vΩ̂ππ. Using the estimates δ̂, π̂, Ω̂ππ, Ω̂δδ and Ω̂πδ we follow Magnus-

son (2010) and construct

Ω̂(β0) = Ω̂δδ + (δ̂v − β0)
2Ω̂ππ,

D(θ̂, β0) = π̂ − (δ̂v − β0)
2{Ω̂(β0)}−1Ω̂ππ,

Λ̂(β0) = Ω̂ππ − (δ̂v − β0)
2Ω̂ππ{Ω̂(β0)}−1Ω̂ππ,

which allows us to construct all the (robust) test statistics.
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Clarke, B. R. (1983), “Uniqueness and Fréchet Differentiability of Functional Solutions to

Maximum Likelihood Type Equations,”Annals of Statistics, 1196–1205.
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